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Abstract

This report outlines Team mil’s approach for the FIFA
Skeletal Tracking Challenge 2025. The task involves ac-
curate 3D human pose estimation from monocular soccer
broadcast videos. We propose enhancements over the pro-
vided baseline, addressing its key limitations such as un-
reliable camera pose estimation and limited skeletal ac-
curacy. Our method integrates optical flow-based cam-
era pose tracking with a robust 3D human pose estimation
pipeline. Ablation studies demonstrate the effectiveness of
each component, and our approach achieves a significant
reduction in error score on the challenge leaderboard.

1. Introduction
Estimating global 3D human pose from monocular video is
a long-standing challenge in computer vision, particularly
in the context of sports, where occlusion, fast motion, and
limited viewpoints make the task even more complex. The
FIFA Skeletal Tracking Challenge 2025 offers a practical
benchmark for this task using real-world soccer broadcast
footage. Participants are required to reconstruct temporally
consistent 3D skeletal poses of all visible players in world
coordinates, using only monocular video input and a set of
known pitch landmarks.

The baseline method provided by the organizers offers
a starting point, but has several limitations. It relies on
moving players as visual anchors for estimating the camera
pose, resulting in instability. It also uses older human pose
estimation models that do not provide state-of-the-art accu-
racy. Furthermore, it processes each frame independently,
ignoring valuable temporal continuity.

To address these limitations, we propose a robust method
that combines optical flow-based camera pose estimation, a
modern 3D human mesh recovery model, and novel cor-
rections for global orientation estimation. We also intro-
duce several enhancements, such as temporal smoothing
and bounding box ensemble strategies, to improve perfor-
mance in diverse scenarios.
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Problem Setting Given a monocular soccer broadcast
video, the goal is to estimate global 3D human poses for
each visible player across all frames. The task is formulated
as a sequence-to-sequence mapping, where camera intrin-
sics, extrinsics (provided only for the first frame), and 2D
bounding boxes are given as input, and the system outputs
3D joint locations in world coordinates.

Input
• Camera Parameters: Intrinsic matrix (per frame),

Distortion coefficients (per frame), Rotation matrix
(first frame), Translation vector (first frame)

• 2D bounding boxes: (xmin, ymin, xmax, ymax) for
each player in the camera frame

Output
• 3D joint coordinates: (x, y, z) for 15 selected SMPL

joints per subject per frame. (nose, right / left shoulder,
elbow, wrist, hip, knee, ankle, and foot.)

Evaluation Submissions are evaluated using a weighted
combination of global and local Mean Per Joint Position
Error (MPJPE):

final score = Global MPJPE + 10× Local MPJPE (1)

• Global MPJPE: Measures the absolute joint error in
world coordinates.

• Local MPJPE: Measures joint error relative to the root
joint (local accuracy).

2. Baseline Method
The official baseline for the FIFA Skeletal Tracking Chal-
lenge follows a multi-stage pipeline that combines 2D/3D
pose estimation with geometric reasoning to recover global
3D poses from monocular input.

The baseline consists of the following key steps:
1. Local 2D and 3D Pose Estimation

For each cropped player image (based on the 2D
bounding box), the 4D-Humans model [1] is applied
to estimate both 2D keypoints and 3D skeletal poses
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in the camera coordinate system. The output joints
are reduced to 15 keypoints to match the target eval-
uation format.

2. Camera Pose Estimation
To transform the locally estimated 3D poses into
global coordinates, the following geometric steps are
performed:
(a) Initial Camera Pose Estimation: Players with

stable aspect ratios across frames are selected,
and their trajectories are used to estimate the ini-
tial camera rotation R and translation t via Sin-
gular Value Decomposition (SVD).

(b) Refinement Using Field Landmarks: Known 3D
pitch landmarks are first projected into the im-
age using the initial camera estimation, and the
camera poses are then refined by minimizing the
reprojection error between the projected land-
marks and the detected pitch lines.

3. Global Pose Optimization
Once the camera parameters are determined, the local
3D poses are converted to global coordinates through
the following steps:
(a) Translation Alignment: Each 3D skeleton is

grounded at the intersection between the ground
plane (i.e., z = 0) and the camera ray passing
through the bottom-right pixel of its 2D bound-
ing box.

(b) Reprojection-based Optimization: The global
3D pose is reprojected back into the image, and
joint positions are refined by minimizing the re-
projection error with respect to the detected 2D
keypoints.

3. Our solution
Our solution builds on insights from the baseline method.
We first identify key areas for improvement and then intro-
duce our enhancements in detail.

• Robust camera pose estimation: The baseline relies
on moving players as visual anchors, which can lead
to unstable camera pose estimation under occlusions
or abrupt movements. We propose an alternative cam-
era pose estimation method based on pitch landmarks
using optical flow.

• Modern pose estimation backbone: The use of 4D-
Humans[1], while effective, does not leverage recent
advancements in mesh-based human pose estimation
models. We adopt SMPLest-X[4] for higher accuracy
and richer joint representation.

• Global orientation compensation: Most human
mesh recovery models assume a weak perspective pro-
jection, which can lead to incorrect global orientations
– especially for people near the image boundaries. We
explicitly correct the predicted global orientation by

Figure 1. Tracking of pitch landmarks using optical flow. Red:
projected positions (current frame); Blue: predicted positions
(next frame).

considering the angle between the camera’s optical
axis and the viewing ray of each bounding box, result-
ing in more accurate and stable orientation estimates.

• Temporal consistency: The baseline treats each frame
independently. Our method incorporates temporal
smoothing and filtering strategies to ensure stable 3D
trajectories across frames.

3.1. Camera Pose Estimation
We begin by projecting 3D pitch landmarks into the image
frame using known camera parameters. For the next frame,
we predict the optical flow of these landmarks to obtain cor-
respondences.

Using the matched points from adjacent frames, we ap-
ply the Perspective-n-Point (PnP) algorithm to estimate the
relative camera pose. This procedure is repeated frame-by-
frame to estimate the camera pose trajectory throughout the
sequence. Figure 2 shows a visual comparison of baseline
vs. our method. While the baseline often fails to maintain
stable estimates over long sequences, our method remains
robust even under extended and challenging conditions

3.2. 3D Skeletal Pose Estimation
We replace the baseline’s 3D pose estimator with SMPLest-
X [4], which offers significantly improved accuracy and ex-
pressiveness. To correct errors arising from the weak per-
spective assumption, we adjust the predicted global orien-
tation based on the ray direction between the bounding box
center and the camera’s optical axis (Figure 3). As shown in
Figure 4, the compensated skeleton better matches the 2D
image, particularly at the spine alignment.

3.3. Additional Enhancements
In addition to the core improvements, we apply several mi-
nor yet effective techniques to further enhance pose estima-
tion:



Figure 2. Projected pitch points (frame 300). Top: Baseline. Bot-
tom: Ours.

Figure 3. Illustration of global orientation correction based on ray-
angle with camera optical axis.

• Tangent space optimization: Body rotations are opti-
mized in tangent space, resulting in smoother and more
stable orientation estimates compared to direct param-
eter updates.

• Temporal smoothing: Gaussian filtering is applied to
joint trajectories over time, improving temporal con-
sistency and reducing jitter.

• Ensemble strategies: We generate multiple predic-

Figure 4. Qualitative comparison of global orientation with (right)
and without (left) compensation.

tions by varying the size of input bounding boxes and
aggregate them. This approach improves robustness,
particularly under detection noise or occlusion.

• Pseudo pitch landmarks: We introduce additional
virtual pitch landmarks in areas with sparse field fea-
tures, such as between the center circle and penalty
box.

3.4. Ablation Study
To evaluate the contribution of each component in our
pipeline, we conducted an ablation study using the official
leaderboard metric (lower is better). Table 1 summarizes
the step-by-step improvements.

Table 1. Ablation results showing the leaderboard score after each
successive improvement.

Method Variant Leaderboard Score
Baseline (4D-Humans, no camera fix) 6.23
+ Optical flow & PnP for camera pose 1.85
+ Tangent space optimization 1.71
+ Temporal smoothing (hip joint only) 1.68
+ Replace with SMPLest-X 1.53
+ Temporal smoothing (all joints) 1.48
+ Ensemble bounding boxes 1.41
+ Global orientation compensation 1.37

The results highlight the cumulative impact of each en-
hancement. In particular, our robust camera pose estimation
contributes substantially to the overall performance gain.

4. Discussion and Future Work
Our method achieves substantial error reduction by improv-
ing both camera pose estimation and 3D human pose rep-
resentation. However, several directions remain open for
further enhancement:
• Learning-based Optical Flow: While we currently use a

classical Lucas-Kanade optical flow method for simplic-
ity, future work could explore learning-based approaches



such as RAFT [3], which may offer improved landmark
tracking performance.

• Multi-frame Pose Estimation: Incorporating temporal
context directly into the pose estimation model may im-
prove consistency without post-smoothing.

• Domain-specific Fine-tuning: Training the pose estima-
tion model on the WorldPose dataset [2] may lead to im-
proved accuracy in soccer-specific scenarios.
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