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Abstract

This is a technical report for the FIFA Skeleton Light
Challenge 2025. Given a video of a single broadcast cam-
era, the task is to predict the 3D skeletons of players in the
world coordinate system. We propose a method that extends
our work, RCR (Robust Crowd Reconstruction), framework
to video inputs. To estimate camera pose, we design a rela-
tive camera pose search algorithm with a fast line projector
and achieve robustness and efficiency. To estimate 3D skele-
tons, we use the RCR framework to estimate the Human-
scene Virtual Interaction Point (HVIP) and the SMPL pa-
rameters. Finally, we refine the 3D HVIP to ensure the
consistency of the human movement and 3D skeletons are
extracted from the SMPL parameters.

1. Method

Given a video, we first remove the distortion of each frame
(Sec. 1.1) for a simplified projection model, then estimate
the camera pose of each frame (Sec. 1.2) and estimate the
camera space SMPL parameters of each frame (Sec. 1.3),
which can be converted to the world space as the final output
by the esitmed camera pose.

1.1. Data Preposessing

Undistortion. The precisely calibrated camera intrinsics

of each frame are provided as input. For each frame, they

are intrinsics matrix Koigina € R**? and distortion coeffi-

cients Doriginal € R5 (opencv format). For convenience, we

undistort the image for a unified camera model, which is

the camera intrinsics matrix K € R®*3 without distortion.

Note that:

* Removing the distortion is necessary for our method.

* Keeping a unified K is not necessary. We make it uni-
fied only for convenience. Later, when we disccuss the
speed of our method, we will make fair tests on the frames
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where distortion is removed but intrinsics matrixes varies
from frame to frame. (Because a unified K needs up-
sampling the image to around 5K to make it lossless, re-
sulting in slow processing speed.)

1.2. Camera Pose Estimation

In this subsection, the inputs are:

* A unified camera intrinsics matrix K.

* A undistorted image sequence {L}fil

* A sparse man-made point cloud of the football court to
define the world space.

e A camera extrinsics matrix Egq € R**? of the first
frame, which is the transformation from the world space
to the camera space.

* Players’ ground-truth bounding boxes.

Our goal is to estimate the camera extrinsics matrix F; €

R*4*4 of each frame I;. Inspired by the official baseline®,

we solve the camera pose by finding the best alignment be-

tween (1) the detected football court lines and (2) the pro-
jected world space court lines.

2D Court Line Detection. We first detect a coarse line
mask following the baseline via an adaptive thresholding
method. Then we enhance it with the following strategies:

(1) since we find our later steps are robust so that the pre-

vious frame’s camera pose is with high confidence, we use

it to remove the area that is outside the 2D projected foot-
ball court (expand the 3D court by 3%); (2) we remove the
given human bboxes area to make it look clean; (3) we re-
move the pixels that are not “white enough” (the euclidean
distance between its color and [0, 0, 1] is larger than 0.7 in

HSV space); (4) we use the opencv dilate function with

2 iterations to make the line mask thicker.

3D Court Line Projection. We first convert the sparse
point cloud to 3D vertices and their connections. This con-
version needs a little manual work, but it is acceptable be-
cause we only need to do it once. Given a current i-th

SOfficial baseline: https://github.com/G3P-Workshop/
Skeletal-Tracking-Starter-Kit/
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Figure 1. The camera poses sovled by our searching algorithm and line projector. The red points are those with the highest IoU scores

among every 15 frames. This example video is ARG_.CRO_000737.
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Figure 2. The camera poses refined by the red poses. The red points are those with the highest IoU scores among every 15 frames. The
stretegy of refinement is to keep the red points only and interpolate others linearly. This example video is ARG_.CRO_000737.

frame’s camera extrinsics F; € R3*4 and the intrinsics
K € R3%3, we can first project the 3D vertices to 2D im-
age space and draw white lines on a black image according
to the connections. For the original 1080p resolution, we
make the width of the lines 4 pixels. Finally, we convert the
image to a mask in the Boolean type.

Camera Pose Searching. Inspired by the official base-
line, we ignore the translation part of the camera pose and
solve the camera rotation part only. We note that (1) the de-
grees of freedom of the camera pose is now only 3, which is
a very small value, and (2) the previous 3D line projection
process is fast enough (more than 100 FPS). We can afford
to search the camera pose in a brute-force way. Therefore,
we first convert the camera extrinsics F; to 3 actual euler an-
gles (yaw, pitch, roll) and then try a linear space search. In
practice, for yaw and pitch we search in [—0.385°,0.385°]
with 10 uniformly sampled steps, and for roll we search
n [—0.075°,0.075°] with 8 uniformly sampled steps. For
each combination of the 3 angles, we compute an IoU (In-
tersection over Union) score between the detected line mask
and the projected line mask and select the one with the high-
est score. An example of our searching results is shown in
Fig. 1. According to our test, this algorithm is not sensi-
tive to the searching range, e.g., [—0.5°,0.5°] with 7 steps
can also work well for all the videos. We also discuss our
choice between searching and differential rendering in the
discussion section. Finally, we only keep the camera poses
with the highest IoU scores among every 15 frames and in-
terpolate the camera poses in between linearly to avoid the
jittering. An example of the refined camera angles is shown

in Fig. 2.
1.3. Camera Space SMPL Reconstruction via RCR

We use a recently proposed method, RCR(Robust Crowd
Reconstruction)[2], to reconstruct SMPL parameters for
each frame. RCR can take a single image as input and first
estimate the camera and ground parameters, and detect all
the individuals in the image. Since camera poses have been
nicely estimated in the previous step, and tracking informa-
tion is also given, for each frame, The inputs of RCR are (1)
the frame image, (2) the 2D keypoints of each given bound-
ing box, (3) the camera intrinsics K and (4) the ground pa-
rameters G = {N,D}, N € R3 D € R, where 2D key-
points are obtained from RTMLib[ 1, 3] detecting the bound-
ing boxes and G represents the ground plane consisting of
those 3D points that satisfy the equation N” - P + D = 0,
where P is a 3D point in the world space. G can be con-
verted by the camera extrinsics E; since the ground plane
in the world space is z = 0. The RCR’s outputs of each
individual are the 3D SMPL pose parameters 0.q,, € R,
shape parameters 8 € R0, rotation Riocam € R3*3, scale
Siocam € R and translation Tiocam € R3.

1.4. Post-processing

HVIP Smoothing. RCR models the position of the human
by the torso center point and HVIP (Human-scene Virtual
Interaction Point), where the torso center point is the aver-
age of the 4 key body joints (left shoulder, right shoulder,
left hip and right hip) and the HVIP is a projected point of
the torso center point on the ground plane. To avoid the jit-



tering of the human position, we smooth the HVIP by (1)
removing the outliers, (2) interpolating the removed points
linearly, and (3) smoothing the sequence. The above pro-
cess will be processed in the world space (x, y only since
z = 0 for all HVIPs) for several times. We illustrate the
HVIP sequence after this post-processing in Fig. 3.

In the end, we convert each SMPL parameters to joints in
the world space to satisfy the requirement of the challenge.

Figure 3. The upper image shows the smoothed HVIP trajectory
in world space, projected onto the ground plane (z = 0, i.e., the
football court surface). The red circle marks the HVIP at the first
frame. To illustrate this correspondence, the lower image shows
the input image at the first frame, with the same red circle indicat-
ing the person’s position.

2. Experiments
2.1. Datasets and Training

Datasets and Training. We set the combination of the
training set of LargeCrowd[2] dataset and the first 80% ob-
jects of worldpose dataset to be the training set and the rest
20% objects to be the validation set. We train the HVIPNet
of RCR[2] on the training set and use the pretrained model
for other learnable modules. To balance the training speed
and the ratio of the 2 sub-training sets, we randomly sam-
ple 10% of the WorldPose subset for every epoch. We train
the model for 40 epochs and use the weights with the best
validation loss for the final submission.

2.2. Results Visulization

We show the qualitative results of our method in Fig. 4.
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Figure 4. A qualitative visualization of our results in both front
view reprojection and a third view.

3. Disccussion

Differential Rendering vs. Searching with Line Pro-
jector Using a differential rendering framework (e.g., Py-
torch3D) with its silhouette renderer is a reasonable and el-
egant solution to the camera pose estimation problem. How-
ever, we find that the camera pose freedom can be consid-
ered to be very small in our challenge, and some of the team
members are undergraduate students who are not familiar
with rendering and optimization. Therefore, we choose a
simple searching algorithm with a line projector to solve
the camera pose. Consequently, it proves to be fast (all 13
video can be done in less than 2.5 hours in a server with an
AMD EPYC 7543 CPU and no GPU) and robust (the al-
gorithm is not sensitive to the searching ranges and steps).
Note that we use the same hyperparameters for all steps and
videos from start to finish.
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