Global 3D Human Poses (G3P) Workshop CVPR 2025 Workshop

Robust Camera Pose Estimation and 3D Human Reconstruction for Sports Events

A solution to the Skeletal tracking 'light' challenge

#	Δ	Team	Members	Score	Entries	Last	Solution
1	_	Tim		1.24297	15	1mo	
2	- 1	mil		1.31290	37	1mo	
3	^ 1	arturxarles		1.54698	34	1mo	

Huang Jing

hj00@tju.edu.cn

June 11, 2025

Formulation of the Challenge

For each Scene:

Video

• Camera Intrinsics of each frames, $K \in \mathbb{R}^{N \times 3 \times 3}$, $D \in \mathbb{R}^{N \times 5}$

N is the number of frames, about $500\sim3000$

Distortion at OpenCV Format, k_1, k_2, p_1, p_2, k_3

Camera extrinsic matrices of the first frame

 $P_0 = \begin{vmatrix} R_0 & T_0 \\ 0 & 1 \end{vmatrix} \in \mathbb{R}^{4 \times 4}$

Tracking bounding boxes

A prior: the court in world space is known.

Input

Output • 3D Joints corresponding to the given b-boxes in world space

Our solution

 $\operatorname{argmin} L(I_{\operatorname{detect}}, I_{\operatorname{reproj}})$ • In the spirits of the Baseline*, for each frame: Line Projector Detector 3D court lines I_{detect} *I*reproj in world space something like $||a - b||^2$ L(a,b)To solve P to minimal the difference $P \in \mathbb{R}^{4 \times 4}$ camera extrinsic

^{*} Baseline: https://github.com/G3P-Workshop/Skeletal-Tracking-Starter-Kit by Tianjian

^[1] Matthew, et al. SMPL: A Skinned Multi-Person Linear Model. SIGGRAPH-A. 2015.

Camera Pose Estimation: Line Detector

A set of tradition method.

Input Frame

2remove none-white pixels

4remove given bounding boxes

1Adaptive Thresholding (This also used by the baseline)

3remove out-of-court pixels

5make lines thinker (dilate)

Camera Pose Estimation: Optimization Algorithm

We notice that:

Fixed position, rotation only

- The camera pose can be only 3DoF. ←
- The Euler angles of the camera pose changes less than 0.5° within a frame.
- 0.05° difference is enough to measure the camera pose accuracy.

We can use a naïve **searching** approach to try these 10^3 possible combination.

An example of try different pitch angle, it's easy to find a best IoU case.

Red: I_{detect} Green: $I_{detect} \cup I_{reproj}$

White: I_{reproj}

Camera Pose Estimation: Optimization Algorithm

We can use a naïve **searching** approach to try these 10^3 possible combination.

An example of try different roll angles

Red: I_{detect} Green: $I_{detect} \cup I_{reproj}$

White: I_{reproj}

Camera Pose Estimation: Optimization Algorithm

We use a naïve **searching** approach.

- We can **project points and draw lines** rather than rendering to **accelerate** it since the process does not need to be differentiable.
- Generally, this method is robust and relatively fast. (and easy to write)

Not sensitive to the searching ranges and steps

[-0.385°, 0.385°] with 10 steps

[-0.5, 0.5] with 7 steps

[-0.75, 75] with 10 steps

Either of the above searching settings works well on **all** 13 videos.

All 13 video (600-2300 frames) can be done within 2.5 hours on a server with an AMD EPYC 7543 CPU and no GPU.

≈ **5FPS** with multi-processing

Camera Pose Estimation

• Reprojection visualization.

• We didn't have time to test if a differentiable rendering with an optimizer is better.

Our solution

Step1: Camera Pose Estimation

Step2: Per-frame SMPL Estimation: RCR

SMPL^[2] Reconstruction in Camera Space

^[1] Huang, et al. RCR: Robust crowd reconstruction with up-right space from a single large-scene image. arXiv 2411.06232. 2025.

^[2] Matthew, et al. SMPL: A Skinned Multi-Person Linear Model. SIGGRAPH-A. 2015.

Our solution

Step1: Camera Pose Estimation

Step2: Per-frame SMPL Estimation: RCR

RCR: a two-stage method which can also be feed with the ground-truth bounding-boxes given by the Challenge.

Per-frame SMPL Reconstruction via RCR

Key idea 1/2: HVIP concept to estimate the 3D location

To Solve the problem:

• When the 2D body center $p_c \in \mathbb{R}^2$ on the image and the camera intrinsic matrix $K \in \mathbb{R}^{3 \times 3}$ are known, how to estimate the 3D body center $P_c \in \mathbb{R}^3$?

To estimate the depth?

• Estimate the depth $d \in R$ and use the reverse projection.

$$P_c = K^{-1} * F_{homo}(p_c) * d$$

To estimate the 2D "HVIP"

- Additionally given the ground Ax+By+Cz+D=0, $A,B,C,D\in\mathbb{R}$
- HVIP (Human-scene virtual interaction points) is the 3D projection of the body's center onto the ground along the ground normal direction.

Therefore, we can get P_c by **estimating the 2D HVIP** $p_h \in \mathbb{R}^2$ on the image.

$$\begin{cases} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{cases} = K \quad \frac{(u_h, v_h) = p_h}{(u_c, v_c) = p_c} \quad \Longrightarrow \quad d = \frac{\left(f_x y_h - z_t (v_c - c_y)\right)}{C(v_c - c_y) - Bf_y}$$

Huang, et al. RCR: Robust crowd reconstruction with up-right space from a single large-scene image. arXiv 2411.06232. 2025.

Per-frame SMPL Reconstruction via RCR

Key idea 2/2: Canonical Regression Space

To Solve the problem:

• Simply translate the reconstructed SMPL to the target estimated positions will cause error reprojection and 3D pose inaccuracy.

- Torso Center
- Human-scene Virtual Interaction Point (HVIP)

angular resolution per pixel

We noticed that:

Perspective distortion varies significantly across the image and with the camera intrinsics, but remains approximately constant within a small local region.

Therefore:

- We define a canonical space to eliminate these perspective distortion variation.
- SMPL and 2D HVIP are regressed in the canonical space.

Quick summary of RCR

Key idea 1/2: HVIP concept to estimate the 3D location

HVIP concept and the **explicit ground plane modeling** provide **spatial consistency** of different bounding boxes and frames.

Key idea 2/2: Canonical Regression Space

2D HVIP and SMPL are estimated in a canonical regression space so that we can ensure the **reprojection accuracy**, further slightly improve the **3D accuracy**.

Other Features

- Support single frame input (estimate the camera and ground parameters automatically).
- Support any FoV (Field of View) without any test-time optimization.

Huang, et al. RCR: Robust crowd reconstruction with up-right space from a single large-scene image. arXiv 2411.06232. 2025.

Post-process

- Recover the estimated SMPL to the world space by the camera pose.
- Smooth the 3D positions sequence of each person by removing outliers, interpolating the outliers, and filtering.

Experiments

Visualization of the reconstructed SMPLs.

Discussion

For Camera Pose Estimation:

- The simple and robust camera pose estimation may be helpful for the next year's challenge. (new baseline?)
- These points with ID are hard to recognize so that COLMAP^[1] is not easy to work nicely.

• End-to-end camera pose (like VGGT^[2]) estimation methods are hard to add constraints (e.g., a fixed camera position).

For G3P (Global 3D Human Pose):

- An explicit scene modeling may be good idea.
- Currently, it seems that some methods are balancing the reprojection (our RCR) and the reasonable 3D pose sequence (GVHMR, PHC). But I believe it could be finally solved by achieving the accurate world space poses. At that time, we don't need to strike this balance.
- [1] COMAP, https://github.com/colmap/colmap
- [2] Wang et al. VGGT: Visual Geometry Grounded Transformer. CVPR 2025.
- [3] Shen et al. GVHMR: World-Grounded Human Motion Recovery via Gravity-View Coordinates. SIGGRAPH-A 2024.
- [4] Luo et al. Perpetual Humanoid Control for Real-time Simulated Avatars. ICCV 2023.

Thank my teammates, my supervisor and the organizers.

Jing Huang¹ hj00@tju.edu.cn

Hanrong Zhuang¹ zhr_2021@tju.edu.cn

Lin Zhang¹
Zhanglin_just@tju.edu.cn

Yuxiang Liu¹ lyx1021@tju.edu.cn

Prof. Kun Li^{1,*}

Lab's home page: https://cic.tju.edu.cn/faculty/likun/index.html

1: Tianjin University, Tianjin China.

*: Supervisor